Degree theory on ℵω

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Tree Property at Both אω+1 and אω+2

We force from large cardinals a model of ZFC in which אω+1 and אω+2 both have the tree property. We also prove that if we strengthen the large cardinal assumptions, then in the final model אω+2 even satisfies the super tree property.

متن کامل

More on full reflection below אω

Jech and Shelah [2] studied full reflection below אω, and produced a model in which the extent of full reflection is maximal in a certain sense. We produce a model in which full reflection is maximised in a different direction.

متن کامل

The Tree Property up to אω+1

Assuming ω supercompact cardinals we force to obtain a model where the tree property holds both at אω+1, and at אn for all 2 ≤ n < ω. A model with the former was obtained by Magidor–Shelah from a huge cardinal and ω supercompact cardinals above it, and recently by Sinapova from ω supercompact cardinals. A model with the latter was obtained by Cummings–Foreman from ω supercompact cardinals. Our ...

متن کامل

Degree Bounds on Polynomials and Relativization Theory

We demonstrate the applicability of the polynomial degree bound technique to notions such as the nonexistence of Turing-hard sets in some relativized world, (non)uniform gap-definability, and relativized separations. This way, we settle certain open questions of Hemaspaandra, Ramachandran & Zimand [HRZ95] and Fenner, Fortnow & Kurtz [FFK94], extend results of Hemaspaandra, Jain & Vereshchagin [...

متن کامل

A ZFC Dowker space in אω+1: an application of pcf theory to topology

The existence of an אω+1-Dowker space is proved in ZFC using pcf theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 1983

ISSN: 0168-0072

DOI: 10.1016/0168-0072(83)90040-4